激光与光电子学进展

二硫化钼光电探测器的研究进展

胡万彪*,张婉,顾成鼎

云南大学材料与能源学院,云南省高校高性能阻容感材料与器件重点实验室,云南 昆明 650500

摘要 二维材料由于独特的光学和电学特性,在光电子器件领域具有广阔的应用前景。作为最具代表性材料之一 的二硫化钼,因具有原子级界面和层数关联的能带结构,在光电探测领域拥有诸多重要的优势。近年来,基于纯粹 的二硫化钼器件性能已达瓶颈。为进一步提升性能,能带工程、铁电极化、等离激元共振等方法也已被用于光电探 测器,并取得重要进展,但整个知识体系尚未建立完善。基于此,从光电探测器理论和应用出发,简要总结了二硫 化钼光电探测的最新研究现状,重点阐述了上述三种二硫化钼新型器件的原理、结构设计、制备与光电性能,为进 一步深入研究机理和应用提供了重要参考和指导。

关键词 探测器; 二硫化钼; 能带工程; 铁电; 等离激元 中图分类号 TN364 **文献标志码** A

doi: 10. 3788/LOP202158. 1900006

Review of Molybdenum Disulfide Photodetectors

Hu Wanbiao^{*}, Zhang Wan, Gu Chengding

Key Laboratory of LCR Materials and Devices of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650500, China

Abstract Owing to their unique optical and electronic properties, two-dimensional (2D) materials have demonstrated broad promising applications in optoelectronic devices. Molybdenum disulfide (MoS_2), a representative 2D material, has shown remarkable advantages in the field of photodetection because of its atomiclevel interfaces and thickness-dependent tunable band structure. However, after many years of extensive studies, MoS_2 devices have reached a bottleneck in terms of performance. To further improve the performance of MoS_2 devices, various methods, such as band engineering, ferroelectric polarization, and plasmon resonance, have been investigated. However, a thorough review of such studies has not been conducted. In this paper, we briefly summarize the latest theoretical and practical research into MoS_2 photodetectors based on the three aforementioned methods were reviewed. This comprehensive review can broaden the existing understanding of MoS_2 devices and provide important guidelines for future applications.

Key wordsdetectors; MoS2; band engineering; ferroelectric; plasmonOCIS codes040.5160; 310.6845; 260.5430; 260.5740

1引言

基于半导体的光电探测器通过光电效应将光

信号转换成电信号从而直接检测辐射频率和强度,因此在各个领域引起了广泛的关注,如环境监测、 光谱分析、图像传感和通信^[1-7]。其中涉及光生电荷

收稿日期: 2021-02-05; 修回日期: 2021-03-10; 录用日期: 2021-03-18 基金项目: 国家自然科学基金面上项目(21773205) 通信作者: *huwanbiao@ynu.edu.cn 载流子的产生、分离和传输,以及将这些电荷载流 子提取到外部电路的过程^[8-9]。因此,基于光电半导 体的光电探测器研究致力于从光生载流子的数量、 电子-空穴对的分离与传输等方向进行器件的性能 提升。

近年来,一种基于二维(2D)材料的新型光电探 测器引起了人们的广泛关注^{10]}。得益于有限的尺 寸和超高的表面体积比,二维材料可以产生超常的 光-物相互作用,并获得较高的光增益。例如,单层 石墨烯可以对 300~2500 nm 的超宽光谱范围产生 良好的光响应[11-12],这种宽光谱探测能力以及快速 响应速度[13-14]已使石墨烯成为2D光电探测器领域 的新兴光敏材料。但是,载流子寿命处于皮秒级, 光吸收弱(~2%)等缺点限制了石墨烯探测器的灵 敏度。此外,二硫化钼(MoS₂)表现出卓越的光电性 能,如高光响应性、低暗电流,以及可通过层厚度来 实现更宽的光吸收带隙等[15-16],再加上其可从高质 量大面积 MoS2晶体和化学气相沉积法(CVD)合 成,MoS,在未来的光电探测器中有着广阔的应用前 景[17-19]。因其简单的制造工艺可以和互补的金属氧 化物半导体(CMOS)技术兼容,利用 MoS₂的本征 性质来增强器件的探测能力是非常可取的。为了 探索 MoS₂光探测能力和增强其光响应能力,科研 工作者提出了许多方案,如等离激元共振^[20]、能带 工程^[21]和铁电极化^[22]等。

从第一个单层 MoS₂光电探测器的诞生到如今 结合多种方法提升性能的器件可以看出,基于 MoS₂ 的光电探测器研究已成为当今比较重要的课题。 本文从光电探测器的原理入手,综合各类对 MoS₂ 光电探测器的性能提升机制,重点从能带工程、铁 电极化、等离激元共振三个研究方向阐述了基于 MoS₂光电探测器的研究现状,并对今后的研究方向 做出展望。

2 光电探测器概论

人眼是人类最重要的感光、成像设备。人眼可 以探测到大约10个光子,它的量子效率达到了几个 百分点,而对于更高能量的光子以及更高需求的分 辨率,人眼则无法探测^[23]。光电探测器的出现突破 了人眼对光子能量和分辨率探测的限制。对于光 电探测器,其阈值灵敏度接近光子极限,约为10至 100个光子;光谱灵敏度与日光光谱极为吻合;时间 分辨率约0.1 s^[24],非常适用于科技时代的国防军 事、人民生活和经济发展等各个领域。多种半导体器件都可以用来探测光子的存在,都可看作光电探测器。他们把光信号转换成电信号,当过剩光子和电子在光电导体中产生时,材料的电导率就会增加。电导率的变化是光电探测器的基础。根据探测机制,光电探测器分为以下5类^[25-26]:

光电效应:光子与半导体作用时,能量传递
 给价带中的电子,使电子向真空能级释放;

2)辐射热:光子使电子过渡到中间隙态,然后 衰变回低能带,导致声子产生热量;

3)极化效应:极化光子引起部分材料偏振态的 变化,导致极化效应^[27-28];

4) 光化学: 光子在材料中产生或引起化学 反应;

5) 弱相互作用:光子产生二次效应如气体压力 变化。

在集成电路中,以光电效应为工作原理的光电 探测器占据了主要地位。现就物理机制讨论一下 光电导体的光电转换过程。在光电子学中,一切与 光有关的现象从本质上都可以认为是量子现象,或 者说是物质中有关量子相互作用和能量互换的结 果,它与量子跃迁是联系在一起的。在半导体中与 光有关的量子(电子或空穴)跃迁是发生在导带与 价带之间的。适当能量的光子与半导体互相作用, 会把能量传递给价带中的电子,使之跃迁到导带, 从而在半导体中出现电子-空穴对。过剩电子产生 以后,在外电场作用下,很快地漂移到半导体的阳 极。为了保持整个半导体的电中性,材料阴极处会 从电路中吸收一个电子,过剩的电子再向阳极漂 移。这个过程将持续一段时间。当没有光信号时, 光电子将与空穴复合,光电流将会随时间呈指数衰 减,由此光电子的产生促使了光电材料内部光电流 的变化,即电导率的变化^[29]。

为了更直观地衡量光电探测器的性能,利用以 下几个性能指标对探测器进行表征和比较^[24-26]:

 响应时间(τ):光电探测器从最终输出10% 变为输出90%所需的时间,是描述器件对入射辐射 响应快慢的参数;

 2)量子效率(EQE,η):每个光子产生载流子
 (电子或空穴)的数目,是描述器件光电转换能力的 参数;

3)响应度(R):可以衡量探测器的输入-输出增益,用于表征其将入射光信号转换成电信号的

图 1 光电探测器原理图 Fig. 1 Schematic diagram of photodetector

能力;

4)噪声等效功率(NEP, P_{NE}):是测量光探测器 或探测器系统灵敏度的一种方法,定义为在单位赫 兹输出带宽中给出信噪比为1的信号功率;

5) 探测率(D^{*}):单位入射辐射功率所产生的信 噪比,它等于探测器面积的平方根除以噪声等效功 率,是衡量器件灵敏度的参数;

6) 光电导增益(G): 光电探测器的输出电流与

入射光子直接产生的电流的比值,即内置电流 增益;

7) 动态线性范围(LDR, X_{LDR}): 描述光电探测 器输出信号与输入信号保持线性关系的程度^[30];

8) 暗电流(*I*_{dark}):即使在没有光的情况下,也会 流经光电探测器的电流大小。

不同的探测器类型拥有相似的衡量标准。在 满足上述标准的要求下,根据相应应用领域的需 要,光电探测器还需满足各种要求。从器件性能到 探测器的实际应用,其中存在诸多考量,最后的成 品则是综合性权衡的结果。比如,通常很难将高探 测带宽与高灵敏度结合在一起。

3 二硫化钼光电探测器

将光电特性较强的半导体 MoS₂应用于光电探 测领域的研究颇多。2013年, Lopez-Sanchez 等^[31] 从块体 MoS₂晶体上剥离出单层 MoS₂,并转移至 SiO₂/Si衬底,利用电子束刻蚀和蒸镀工艺制备 Au 电极,构建出基于单层 MoS₂的光电探测器 [图 2(a)]。该器件不仅表现出非常高的光响应性 (880 A/W),而且具有较宽的光谱范围(400~ 680 nm)。

图 2 吸附杂质前后的单层 MoS₂光电探测器的示意图。(a)未吸附杂质^[31];(b)吸附杂质^[32]

Fig. 2 Schematic diagrams of the monolayer MoS_2 photodetector with and without adsorbates. (a) Without adsorbates^[31]; (b) with adsorbates^[32]

2013年, Zhang 等^[32]在 N₂氛围下通过硫化 MoO₃合成大面积单层 MoS₂,并研究了空气中物质 吸附对 MoS₂光电探测器的影响。结果显示,吸附 在单层 MoS₂表面或 MoS₂/SiO₂界面上的带电杂质 增加了界面的库仑势,导致载流子散射增强、迁移 率降低。吸附物质的吸附/解吸过程提高了光生载 流子的复合概率,使得光响应性和光增益减小。此 外,吸附材料有助于光电流的弛豫,缩短了光电流 的衰减时间。Zhang等最后将该器件置于真空下测

得 2200 A/W 的高响应率和 5000 的高光增益。此 次研究从材料制备方法上改进了 MoS₂器件的光响 应,并为今后的器件制备和测试环境提供了理论 基础。

此后,从MoS₂制备的工艺研发出发,在性能、成本等方面对光电探测器进行改进^[33]。然而纯粹的MoS₂晶体管在光电子领域的性能提升已经达到瓶颈期。为了提高材料的潜在性质,多种方法被用于提升光电探测器的性能,如引入异质结^[34]、结合铁电材料

综 述

自发极化^[22]、涂覆金属等离激元^[35]等。表1总结了最 近文献报道的具有代表性的MoS₂光电探测器的性 能。在本章中,我们将重点介绍能带工程、铁电极化 和等离激元共振在光电探测应用中的代表性研究。

Optimization type	Device architecture	Performance	Years	Ref.
Band engineering	MoS_2/WS_2	$\tau_{\rm rise}$ =50 fs	2014	[34]
	MoS ₂ -rubrene	R = 0.5 A/W at 532 nm	2015	[36]
	MoS ₂ /ZnPc	$ au_{\rm rise}/ au_{\rm fall}$ = 72 ms /8 ms, R = 430 A/W at 532 nm	2018	[37]
	$BaTiO_3/MoS_2$	$R{=}120 \mathrm{A/W}$, $\eta{=}4.78{\times}10^4 \%$	2020	[38]
Ferroelectrics polarization	$MoS_2/P(VDF-TrFE)$	R=2570 A/W, D^* =2. 2×10 ¹² cm·Hz ^{1/2} ·W ⁻¹ at 635 nm	2015	[22]
	$MoS_2/Hf_{0.5}Zr_{0.5}O_2$	R=96.8 A/W, D^* =4.75×10 ¹⁴ cm·Hz ^{1/2} ·W ⁻¹ at 637 nm	2020	[39]
Plasmon resonance	Ag nanowire/ MoS_2	$R{=}59.60 \text{ A/W},$ $D^*{=}4.51 \times 10^{10} \text{ cm} \cdot \text{Hz}^{1/2} \cdot \text{W}^{-1} \text{ at } 532 \text{ nm}$	2018	[40]
	Graphene ribbon/MoS $_2$	$R{=}1 imes10^7~{ m A/W}$ at 6–16 $\mu{ m m}$	2018	[20]
	Vertically aligned MoS_2/MoS_2	1000–1750 nm	2020	[41]

表1 具有代表性的 MoS₂光电探测器的性能 Table 1 Performance of some representative MoS₂-based photodetector

3.1 能带工程

在过去的几年中,能带工程作为现代光子和电 子工业中半导体性能控制的重要标志之一,已经受 到了广泛的研究^[42-44]。通过耦合两个具有适当能带 结构的半导体,异质结能够实现较高的分离效率并 可实现光生电子-空穴对的输运,这为具有优良性能 的光电子器件提供了独特的能带工程。异质结可 从界面处两种材料的相对禁带宽度来划分,类型包 括:1)Ⅰ型异质结,禁带宽度小的半导体材料的导 带底和价带顶都处于宽禁带半导体材料的禁带内; 2)Ⅱ型异质结,两种半导体材料的禁带错开。

大多数基于 MoS₂的异质结构呈现 II 型能带对 准,能够有效地分离电子-空穴,实现高效的光收集 和光检测^[45-49]。其中层间激发的变化可以突破固有 带隙的限制并将可探测范围波段扩展至红外波 段^[50-51]。Hong等^[34]在2014年首次利用光致发光成 像和飞秒泵浦-探针光谱观测光激发 MoS₂/WS₂异 质结构中的电荷转移[图3(a)]:在光激发后的50 fs 内,空穴从 MoS₂层转移到 WS₂层,这个速率在二维 范德瓦尔斯(vdW)异质结的研究中是不容小觑的。 此后,Kim等^[52]在2016年构建了垂直堆叠的单层 MoSe₂和单层 MoS₂异质结[图3(b)],并研究双分子 层中同时存在的正负三重子。研究显示,在 MoSe₂ 和 MoS₂之间发生的电荷转移将单层 MoSe₂中的三 重子极性从负转换为正,导致在相同的单层 MoSe₂ 三重子。并且,相比于单层 MoS₂,异质堆叠的双分 子层中 MoS₂的光致发光也显著增强,这表明在垂 直双层堆叠后单层 MoS₂的直接能带跃迁得到增 强。这些结果对单层过渡族金属二卤化物的光学 性能的提升做出了巨大贡献,同时也为 MoS₂的光 电探测应用提供了途径。

对具有Ⅱ型能带对准结构的载流子运输的计 算也是与时俱进的,Latini等^[53]提出一种通用的第 一性原理(DFT)方法来计算不相称的vdW 异质结 的电子准粒子能带结构和激子结合能。他们分别 计算了插入和不插入化学惰性层 hBN 的 MoS₉/ WSe,异质结的能带结构,结果与实验的光致发光光 谱非常吻合。Teitz等^[54]在2020年创建了一种公式 用于筛选二维半导体 MoS₂的二维介电材料界面, 包括SiC/MoS₂(I型)、BeO/MoS₂(II型)和hBN/ MoS₂(Ⅱ型)界面。该方案考虑了对电介质有用的 关键几何参数和电子结构特性(包括:更高的晶格 失配,较小的黏附能,较小的原子电荷转移,较大的 界面宽度,与隔离材料相似的能带结构以及较小的 导带偏移量和价带偏移量)。研究表明,这三种材 料都是良好的介电材料。而在所有测试标准中, I型的SiC/MoS2因其最强的附着力、最强的电荷转 移、最小的界面宽度呈现最差的匹配状态。对于 Ⅱ型的 hBN/MoS₂,最佳传输系数为0.36。此次研 究计算的结果对于设计与 MoS₂的高质量接口具有 重要意义。

图 3 不同类型的异质结构图示。(a)形成Ⅱ型异质结的 MoS₂/WS₂异质结构^[34];(b)形成Ⅱ型异质结的 MoS₂/MoSe₂异质结 构^[52];(c)形成Ⅱ型异质结的 MoS₂/ZnPc 异质结构^[37];(d)形成Ⅰ型异质结的 BaTiO₃/MoS₂异质结构^[38]

Fig. 3 Illustrations of different types of heterostructures. (a) MoS₂/WS₂ heterostructure forming type II heterojunction^[34];
(b) MoS₂/MoSe₂ heterostructure forming type II heterojunction^[37]; (c) MoS₂/ZnPc heterostructure forming type II heterojunction^[38]

除了对MX₂异质结构的研究以外,其他与MoS₂ 结合的 II 型半导体异质结也在崭露头角。Liu等^[36] 在 2015年基于无机 n 型 MoS₂和有机 p 型红荧烯构 建了 vdW 异质结,并观察到良好的光响应特性。该 器件具有 500 mA/W 的高光响应性和小于 5 ms 的 快速响应。Huang等^[37]通过利用酞菁锌(ZnPc)分子 的电荷转移界面,在单层 MoS₂中实现了超快光响 应,如图 3(c)所示。所构建的 MoS₂/ZnPc 界面能够 能使光生空穴立即与 ZnPc 分子分离,远离 MoS₂和 介质界面中的陷阱。与纯粹的 MoS₂探测器相比,该 器件的光响应速度提高了 3 个数量级。这些发现为 基于层状无机物和有机物的纳米电子和光电器件的 设计提供了一条新的途径。各种二维有机材料与 MoS₂的结合将为新型电子和光电设备开辟新的 机遇。

但是,在Ⅱ型半导体异质结的载流子运输过程

中,异质结区域将不可避免地产生较高的非辐射速 率,使得实际应用中的能量消耗增加在所难免。现 阶段已经研究出包括有机-无机杂交[36-37]、化学惰性 层^[53]等一系列方法,但是其结果仍不理想。相反, 在具有Ⅰ型能带对准的异质结构中,界面处的能带 偏移有利于光生载流子从较宽带隙层自发转移到 较窄的带隙层,即将带隙部分扩展到较窄区域[55-56], 这一过程也会导致载流子数量的增加和光致发光 的增强。Ying等^[38]在2020年利用MoS₂的能带特 性,结合BaTiO₃这一光收集能力较强的介电材料, 尝试操纵电荷转移来构建 I 型异质结构 [图 3(b)]。 由于BaTiO₃与MoS₂层之间存在载流子的传输过 程,与仅基于 MoS₂的光电探测器相比,BaTiO₃/ MoS₂堆叠显示出高响应度(120 A/W vs 1.7 A/W) 和外量子效率(365 nm: 4.78×104 % vs 4.5× 10°%)。该研究证明了 I 型异质结设计在光电探 测器中的可行性,并为开发高性能 MoS₂光电器件 提供了实验和理论基础。此外,Gao等^[57]通过构建 PMMA-/PMA2-SiS vdW 异质结从理论上基于 DFT 计算了 I 型能带对准结构。结果表明二维 MMA-/PMA2-SiS vdW 异质结具有直接的 I 型能 带对准结构,并存在合适的带偏移和高光吸收。此 外,其带隙随着外部电场的增加而线性增加,故二 维 MMA-/PMA2-SiS vdW 异质结可以较容易地调 制电荷载流子的复合。这些结果表明,二维各向异 性材料形成具有 I 型能带对准的 vdW 异质结是一 种提升器件光响应性能的路径。

异质结中能带排列的Ⅰ型-Ⅱ型跃迁可以促进光 生载流子的高效分离,这种可控的能带排列在未来的 光电应用中具有巨大的潜力。此种能带的变化在其 他材料中早有研究^[58],而目前基于MoS₂异质结构的 Ⅰ型-Ⅲ型跃迁调控缺乏足够的研究,这可能是由于 MoS₂的费米能级钉扎效应引起的能带固定所致^[59]。

3.2 铁电极化

在垂直堆叠的异质结研究中,通过空间光电流映 射和表面电势曲线并结合有限元模拟^[60],证明在横向 和垂直方向上能带可以弯曲,其中能带排列可以通过 背栅电压来调整^[61-62]。而且,平面内异质结的能带弯 曲仅在横向发生^[63-67]。这种调整能带的方式需要连 续的栅极电压,故不可避免地降低了表面的发光强 度^[68]。为了实现低功耗,铁电材料已被视为复合 MoS₂的替代方法。此外,铁电材料的自发极化方向可以通过外部刺激进行局部切换,此种性能可以通过调控沟道层的电导率来实现更高的开关比^[69]。

基于铁电材料特性提升 MoS₂光电探测器的研究颇多,其中最经典的则是 Wang 团队^[22]。该团队在 2015 年将 P(VDF-TrFE)铁电材料沉积在二维材料 MoS₂表面,利用铁电材料极强的剩余极化场,使 MoS₂原子晶格重新排布、禁带宽度变小,从而使少层 MoS₂载流子完全耗尽。基于该结构,他们研究了 P(VDF-TrFE)/MoS₂器件的光响应,构建出了高性能的可见-红外光电探测器件。该光电探测器具有高响应率(2570 A/W)、高探测率(2.2×10¹² cm·Hz^{1/2}·W⁻¹)、低功耗(0 栅压)、宽波段探测(可见光~1550 nm)、快速响应等特点。此次研究为推进铁电材料与 MoS₂的结合在光电子器件领域的应用提供了新思路。

结合铁电材料的光电探测器的光响应行为可 以通过能带图来解释,如图4所示。光照会导致电 子-空穴对的吸收和激发,故可以通过施加漏极-源 极偏压来提取电流。在铁电极化向下状态(P down state)和无极化状态(fresh state)下,光生电流和热 电子/隧穿电流均为器件暗电流。在铁电极化向上 状态(P up state)下,光生电流占领通道电流的主导 地位,这种情况促使材料具有大的光电流和高效的 光响应性能。

图 4 铁电极化调控 MoS₂光电探测器:三种不同铁电极化态的平衡能带图^[22]

Fig. 4 MoS_2 photodetector controlled by ferroelectric polarization: equilibrium energy band diagrams of three different ferroelectric polarization states^[22]

铁电聚合物需要通过超高的额外电压来极化, 而且,复杂的电极制备和极化过程阻碍了极化铁电 材料的利用。因此,在更小的电压下,剩余极化能 力更强的无机铁电材料成为新兴的选择。Tu等^[39] 利用这种优势构建了一种在栅极介电中增加 Hf_{0.5}Zr_{0.5}O₂这一无机铁电薄膜的MoS₂光电探测器, 如图5所示。由于铁电局部静电场引起的强光选通 效应、铁电负电容效应起到电压放大作用,该光电 探测器在室温下表现出 4.75×10¹⁴ cm·Hz^{1/2}·W⁻¹的 超高光电探测率。

3.3 等离激元共振

对于增强光电子器件的性能,铁电薄膜表现出 出色的抑制暗电流的特性。铁电材料引入的超高 局部电场耗尽了半导体通道的背景电荷载流子,该 背景电荷载流子比传统场效应晶体管中的栅极偏 置耗费了更多的电荷。另外,由Au纳米粒子激发 综述

的等离激元共振是增强光电流响应的另一种有效 方法^[70-71]。Au纳米粒子中的局部表面等离激元共 振导致电子振荡。由于振荡,光被捕获在Au纳米 粒子的表面周围,从而改善了光吸收。

2013年,Liu等^[73]将等离子体纳米结构和原子 厚度石墨烯结合,其局域等离激元共振增强的有限 差分时域模拟结果[图6(a)~(d)]表明平均光强度 随着纳米粒子平面距离的增加而迅速衰减,由此证 明具有薄的活性层以及将活性层放置在等离子体 纳米结构的紧邻处对于确保最大增强效果的重要 性,该研究使得等离激元在二维材料上得以运用。 此后,Bhanu等^[35]在2014年研究了由热沉积产生的 Au-MoS₂杂化纳米薄片的器件。光照下,处于MoS₂ 激发态的电子会转移到Au,留下一个空穴,从而在 MoS₂中引起p掺杂,产生电子结构的变化。该结果 为研究二维过渡金属硫化物性能的局部可调性提 供了新的思路,这也是等离激元效应在MoS₂上的 典型应用之一。同期,Najmaei等^[74]研究了单层 MoS₂涂层Au纳米管的器件,并使用空间分辨光致 发光光谱法研究了这些杂化等离激元纳米结构的 光学性质。研究表明,单层MoS₂的光学特性受到 纳米管表面等离激元的强烈影响:等离激元的增加 增强了MoS₂的光吸收并导致MoS₂局部温度升高。 这些影响使得与Au纳米管结合的MoS₂光致发光 变宽并出现红移。这项研究为混合金属/半导体纳 米结构中的等离子-激子相互作用提供了证据。

除了Au以外,对于其他金属纳米结构的研究 也很广泛,其中以银最为显著。Butun等^[72]将银纳 米圆盘和大面积单层MoS₂结合,并对器件的光响 应进行测试,如图6(e)所示。由于等离激光共振耦 合促进了光-物质相互作用,与纯粹的MoS₂器件相 比,这一器件的光致发光增强了12倍。2018年, Bang等^[40]将银纳米线与单层MoS₂结合[图6(f)], 与纯粹的MoS₂相比较,其杂化结构显示出560倍的 超高光致发光增益。对器件进行光响应测试后发

图 6 等离激元应用于 MoS₂光电探测器的研究。(a)~(d) 局域等离激元共振增强的有限差分时域模拟^[73];(e)~(h) 等离激 元/MoS₂异质结构示意图^[20,4041,72]

Fig. 6 Research of MoS_2 photodetector with plasmon resonance. (a)–(d) Finite-difference time-domain simulation of plasmon resonance enhancement of local optical field^[73]; (e)–(h) schematic reporesentation of plasmonic/ MoS_2 heterostructures ^[20, 40-41, 72]

现,该器件的光电流比原始光电探测器大250倍。 而且,该光探测器的光响应性和光探测性提高了约 1000倍。

众所周知,等离激元可以通过控制载流子密度 在宽光谱范围内调制谐振波长。Park 等^[75]在保持 MoS₂的厚度为25 nm的情况下,通过将液相剥离的 2H-MoS2与等离子体Ag纳米晶体结合,使其在 1550 nm 处仍显示出良好的光响应。该器件近红外 (NIR)的吸收来自化学剥离过程中形成的缺陷,这 些缺陷可以改变 MoS₂的固有带隙,从而将其光谱 响应范围扩大到NIR区域。但是,这种化学剥离的 方法通常会产生 MoS₂的混合相(例如1T和2H),这 会极大地影响光电探测器的性能。为了克服这一 缺点,Min等[41]利用MoS。纳米片边缘部位的缺陷作 为三维等离子体的吸收平台,通过化学气相沉积 (CVD)工艺在单层 MoS₂上生长出垂直排列的 MoS₂纳米片,并用氧等离子体处理纳米片使其产生 亚化学计量的 MoO_x, 如图 6(g) 所示。由于等离激 元共振, MoO_x 中4.5×10¹³ cm⁻²的高电子掺杂密度 促进了器件在1000~1750 nm NIR 波长范围的吸 收。与金属表面等离激元不同,石墨烯中的等离激 元可以通过施加的电压进行有效调节,从而实现可 调谐光电器件。Liu等^[20]研究了采用石墨烯带/ MoS,垂直异质结构的光电探测器,如图6(h)所示。 得益于栅压对石墨烯中高度受限等离子体的调节, 该器件在 6~16 μm 波长范围内可实现最高 1× 10⁷ A/W的响应率。

等离激元增强的光电探测器的出现,表明由金属纳米颗粒和石墨烯等产生的等离激元极化子与 MoS₂的耦合,不仅可以提供一种有效的方法来增强 MoS₂基光电探测器的光吸收,还能扩大器件的响应 范围。

4 结束语

总的来说,以上对于 MoS₂光电探测器的性能 提升方案,是从光电探测器的原理入手,通过增加 光生电子-空穴对的产生、分离以及传输,或是增加 器件对光的捕获、吸收的方式来增加器件作为光电 探测时的响应率、探测率、开关比等性能。其中,以 能带工程为代表的异质结引入,虽能增强器件的响 应率和探测率,但由于光生载流子在能带之间的传 输,其响应时间会不可避免地降低。此外,铁电极 化能改变 MoS₂的能带分布,展现出优良的抑制暗 电流的特性,但栅极偏置耗尽了更多的电荷,使得能量使用率较低。最后,由于金属的自由载流子浓度不受外部刺激的影响,金属等离激元共振对于提高开关比的应用是不可取的,因此,基于MoS₂局域等离激元共振还需根据其他材料作进一步研究。

首先,因为如今基于 MoS₂的研究大多基于剥 离块体这一合成方案,而剥离所得薄膜中载流子迁 移率极低,这是影响其性能提升的关键因素,所以 采用合适的制备方法合成性能优异的 MoS₂是比较 重要的任务。其次,由于探测器的均匀性、表面污 染和转移过程很大程度上依赖于人工操作的熟练 程度,故实现可靠稳定的 MoS₂光电探测器的规模 化生产仍具有挑战性。

如前所述,要充分利用 MoS₂的优势进行有效 的光探测,还需要付出更多的努力。一般来说,结 合能带工程、铁电极化、等离激元共振仍然是抑制 暗电流、提高响应速度和获得高响应率的好策略。

参考文献

- [1] Yang W, Chen J X, Zhang Y, et al. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology[J]. Advanced Functional Materials, 2019, 29(18): 1808182.
- [2] Wangyang P H, Gong C H, Rao G F, et al. Recent advances in halide perovskite photodetectors based on different dimensional materials[J]. Advanced Optical Materials, 2018, 6(11): 1701302.
- [3] Lin C H, Cheng B, Li T Y, et al. Orthogonal lithography for halide perovskite optoelectronic nanodevices[J]. ACS Nano, 2019, 13(2): 1168-1176.
- [4] Alamri A M, Leung S, Vaseem M, et al. Fully inkjetprinted photodetector using a graphene/perovskite/ graphene heterostructure[J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2657-2661.
- [5] Wang F, Wang Z X, Yin L, et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection[J]. Chemical Society Reviews, 2018, 47(16): 6296-6341.
- [6] Wang J, Luo L B. Advances in Ga₂O₃-based solarblind ultraviolet photodetectors[J]. Chinese Journal of Lasers, 2021, 48(11): 1100001.
 王江,罗林保.基于Ga₂O₃日盲紫外光电探测器的研 究进展[J].中国激光, 2021,48(11): 1100001.
- [7] Duan Y H, Cong M Y, Jiang D Y, et al. Spectral response cutoff wavelength of ZnO ultraviolet photodetector modulated by bias voltage[J]. Acta

第 58 卷 第 19 期/2021 年 10 月/激光与光电子学进展

Optica Sinica, 2020, 40(20): 2004001.

段雨晗,丛明煜,蒋大勇,等.电压调制ZnO紫外探测器光响应截止波长的研究[J].光学学报,2020,40 (20):2004001.

- [8] Ouyang W, Teng F, He J H, et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering[J]. Advanced Functional Materials, 2019, 29(9): 1807672.
- [9] Chen H Y, Lu Y, Li C, et al. Multilayer PtSe₂/ TiO₂ NRs schottky junction for UV photodetector[J]. Acta Optica Sinica, 2020, 40(20): 2025001.
 陈红云,鲁玉,李辰,等.多层 PtSe₂/TiO₂纳米棒肖 特基结紫外光电探测器[J].中国激光, 2020, 40(20): 2025001.
- [10] Han N, Ji T, Cui Y X, et al. Research progress of two-dimensional layered perovskite materials and their applications[J]. Laser &. Optoelectronics Progress, 2019, 56(7): 070002.
 韩娜,冀婷,崔艳霞,等.二维层状钙钛矿材料及其 应用研究进展[J]. 激光与光电子学进展, 2019, 56 (7): 070002.
- [11] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.
- [12] Zhang Y Z, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4: 1811.
- [13] Urich A, Unterrainer K, Mueller T. Intrinsic response time of graphene photodetectors[J]. Nano Letters, 2011, 11(7): 2804-2808.
- [14] Xia F N, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[C]//Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California, United States. Washington D. C.: OSA, 2010: CMV1.
- [15] Choi W, Cho M Y, Konar A, et al. Phototransistors: high-detectivity multilayer MoS₂ phototransistors with spectral response from ultraviolet to infrared[J]. Advanced Materials, 2012, 24(43): 5832-5836.
- [16] Lee H S, Min S W, Chang Y G, et al. MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Letters, 2012, 12(7): 3695-3700.
- [17] Lin Z Y, Liu Y, Halim U, et al. Solutionprocessable 2D semiconductors for high-performance

large-area electronics[J]. Nature, 2018, 562(7726): 254-258.

- [18] Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping[J]. 2D Materials, 2014, 1(1): 011002.
- [19] Xie Y, Wang Z, Zhan Y J, et al. Controllable growth of monolayer MoS₂ by chemical vapor deposition via close MoO₂ precursor for electrical and optical applications[J]. Nanotechnology, 2017, 28 (8): 084001.
- [20] Liu Y, Gong T X, Zheng Y N, et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry[J]. Nanoscale, 2018, 10(42): 20013-20019.
- [21] Han P Z, St Marie L, Wang Q X, et al. Highly sensitive MoS₂ photodetectors with graphene contacts
 [J]. Nanotechnology, 2018, 29(20): 20LT01.
- [22] Wang X D, Wang P, Wang J L, et al. Ultrasensitive and broadband MoS 2 photodetector driven by ferroelectrics[J]. Advanced Materials, 2015, 27(42): 6575-6581.
- [23] Haugan H J, Elhamri S, Szmulowicz F, et al. Study of residual background carriers in midinfrared InAs/ GaSb superlattices for uncooled detector operation
 [J]. Applied Physics Letters, 2008, 92(7): 071102.
- [24] Donati S. Photodetectors: devices, circuits and applications[J]. Measurement Science and Technology, 2001, 12(5): 653.
- [25] Stöckmann F. Photodetectors, their performance and their limitations[J]. Applied Physics, 1975, 7(1): 1-5.
- [26] Yotter R A, Wilson D M. A review of photodetectors for sensing light-emitting reporters in biological systems[J]. IEEE Sensors Journal, 2003, 3 (3): 288-303.
- [27] Bishop P, Gibson A, Kimmitt M. The performance of photon-drag detectors at high laser intensities[J].
 IEEE Journal of Quantum Electronics, 1973, 9(10): 1007-1011.
- [28] Grinberg A A, Luryi S. Theory of the photon-drag effect in a two-dimensional electron gas[J]. Physical Review B, 1988, 38(1): 87.
- [29] Neamen D A. Semiconductor physics and devices[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2017.
- [30] Hu Y, Marks B S, Menyuk C R, et al. Modeling sources of nonlinearity in a simple p-i-n photodetector[J]. Journal of Lightwave Technology, 2014, 32(20):

3710-3720.

- [31] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS₂[J]. Nature Nanotechnology, 2013, 8(7): 497-501.
- [32] Zhang W, Huang J K, Chen C H, et al. High-gain phototransistors based on a CVD MoS₂ monolayer
 [J]. Advanced Materials, 2013, 25(25): 3456-3461.
- [33] Yu H, Liao M Z, Zhao W J, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS₂ continuous films[J]. ACS Nano, 2017, 11(12): 12001-12007.
- [34] Hong X, Kim J, Shi S F, et al. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures
 [J]. Nature Nanotechnology, 2014, 9(9): 682-686.
- [35] Bhanu U, Islam M R, Tetard L, et al. Photoluminescence quenching in gold-MoS₂ hybrid nanoflakes[J]. Scientific Reports, 2014, 4: 5575.
- [36] Liu F C, Chow W L, He X X, et al. Van der Waals p-n junction based on an organic-inorganic heterostructure[J]. Advanced Functional Materials, 2015, 25(36): 5865-5871.
- [37] Huang Y, Zhuge F W, Hou J X, et al. Van der Waals coupled organic molecules with monolayer MoS₂ for fast response photodetectors with gatetunable responsivity[J]. ACS Nano, 2018, 12(4): 4062-4073.
- [38] Ying H T, Li X, Wang H M, et al. Band structure engineering in MoS₂ based heterostructures toward high-performance phototransistors[J]. Advanced Optical Materials, 2020, 8(13): 2000430.
- [39] Tu L Q, Cao R R, Wang X D, et al. Ultrasensitive negative capacitance phototransistors[J]. Nature Communications, 2020, 11(1): 101.
- [40] Bang S, Duong N T, Lee J, et al. Augmented quantum yield of a 2D monolayer photodetector by surface plasmon coupling[J]. Nano Letters, 2018, 18 (4): 2316-2323.
- [41] Min B K, Nguyen V T, Kim S J, et al. Surface plasmon resonance-enhanced near-infrared absorption in single-layer MoS₂ with vertically aligned nanoflakes[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14476-14483.
- [42] Arp T B, Pleskot D, Aji V, et al. Electron-hole liquid in a van der Waals heterostructure photocell at room temperature[J]. Nature Photonics, 2019, 13 (4): 245-250.
- [43] Jauregui L A, Joe A Y, Pistunova K, et al.

Electrical control of interlayer exciton dynamics in atomically thin heterostructures[J]. Science, 2019, 366(6467): 870-875.

- [44] Zeng Q S, Liu Z. Novel optoelectronic devices: transition-metal-dichalcogenide-based 2D heterostructures
 [J]. Advanced Electronic Materials, 2018, 4(2): 1700335.
- [45] Terrones H, López-Urías F, Terrones M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides[J]. Scientific Reports, 2013, 3: 1549.
- [46] Komsa H P, Krasheninnikov A V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles[J]. Physical Review B, 2013, 88(8): 085318.
- [47] Kośmider K, Fernández-Rossier J. Electronic properties of the MoS₂-WS₂ heterojunction[J]. Physical Review B, 2013, 87(7): 075451.
- [48] Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors[J]. Applied Physics Letters, 2013, 102(1): 012111.
- [49] Gong C, Zhang H J, Wang W H, et al. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors[J]. Applied Physics Letters, 2013, 103(5): 053513.
- [50] Ross J S, Rivera P, Schaibley J, et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction[J]. Nano Letters, 2017, 17(2): 638-643.
- [51] Kim S G, Kim S H, Park J, et al. Infrared detectable MoS₂ phototransistor and its application to artificial multilevel optic-neural synapse[J]. ACS Nano, 2019, 13(9): 10294-10300.
- [52] Kim M S, Seo C, Kim H, et al. Simultaneous hosting of positive and negative trions and the enhanced direct band emission in MoSe₂/MoS₂ heterostacked multilayers[J]. ACS Nano, 2016, 10 (6): 6211-6219.
- [53] Latini S, Winther K T, Olsen T, et al. Interlayer excitons and band alignment in MoS₂/hBN/WSe₂ van der Waals heterostructures[J]. Nano Letters, 2017, 17(2): 938-945.
- [54] Teitz L, Toroker M C. Theoretical investigation of dielectric materials for two-dimensional field-effect transistors[J]. Advanced Functional Materials, 2020, 30(18): 1808544.
- [55] Williams K R, Diroll B T, Watkins N E, et al. Synthesis of type I PbSe/CdSe dot-on-plate heterostructures with near-infrared emission[J]. Journal of the American Chemical Society, 2019,

141(13): 5092-5096.

- [56] Li Q Y, Wu K F, Chen J Q, et al. Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet type-I heterostructures[J]. ACS Nano, 2016, 10(3): 3843-3851.
- [57] Gao R, Liu H R, Yang J E, et al. 2D anisotropic type-I SiS vdW heterostructures toward infrared polarized optoelectronics applications[J]. Applied Surface Science, 2020, 529: 147026.
- [58] Liao C S, Yu Z L, He P B, et al. Effects of composition modulation on the type of band alignments for Pd₂Se₃/CsSnBr₃ van der Waals heterostructure: a transition from type I to type II[J]. Journal of Power Sources, 2020, 478: 229078.
- [59] Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metalsemiconductor junctions[J]. Nature, 2018, 557 (7707): 696-700.
- [60] Jariwala D, Howell S L, Chen K S, et al. Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS₂[J]. Nano Letters, 2016, 16(1): 497-503.
- [61] Jariwala D, Sangwan V K, Seo J W T, et al. Largearea, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors[J]. Nano Letters, 2015, 15(1): 416-421.
- [62] Jariwala D, Sangwan V K, Wu C C, et al. Gatetunable carbon nanotube-MoS₂ heterojunction p-n diode[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (45): 18076-18080.
- [63] Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode[J]. Nature Nanotechnology, 2014, 9(4): 257-261.
- [64] Buscema M, Groenendijk D J, Steele G A, et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating[J]. Nature Communications, 2014, 5: 4651.
- [65] Groenendijk D J, Buscema M, Steele G A, et al.

Photovoltaic and photothermoelectric effect in a double-gated WSe₂ device[J]. Nano Letters, 2014, 14(10): 5846-5852.

- [66] Baugher B W H, Churchill H O H, Yang Y F, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4): 262-267.
- [67] Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe₂ p-n junctions[J]. Nature Nanotechnology, 2014, 9(4): 268-272.
- [68] Chen J W, Lo S T, Ho S C, et al. A gate-free monolayer WSe₂ pn diode[J]. Nature Communications, 2018, 9: 3143.
- [69] Wu G J, Wang X D, Chen Y, et al. MoTe₂ p-n homojunctions defined by ferroelectric polarization [J]. Advanced Materials, 2020, 32(16): e1907937.
- [70] Liu Y, Huang W, Gong T X, et al. Ultra-sensitive near-infrared graphene photodetectors with nanopillar antennas[J]. Nanoscale, 2017, 9(44): 17459-17464.
- [71] Guo J X, Li S D, He Z B, et al. Near-infrared photodetector based on few-layer MoS₂ with sensitivity enhanced by localized surface plasmon resonance[J]. Applied Surface Science, 2019, 483: 1037-1043.
- [72] Butun S, Tongay S, Aydin K. Enhanced light emission from large-area monolayer MoS₂ using plasmonic nanodisc arrays[J]. Nano Letters, 2015, 15(4): 2700-2704.
- [73] Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature Communications, 2011, 2: 579.
- [74] Najmaei S, Mlayah A, Arbouet A, et al. Plasmonic pumping of excitonic photoluminescence in hybrid MoS₂-Au nanostructures[J]. ACS Nano, 2014, 8 (12): 12682-12689.
- [75] Park M J, Park K, Ko H. Near-infrared photodetector achieved by chemically-exfoliated multilayered MoS₂ flakes[J]. Applied Surface Science, 2018, 448: 64-70.